Definition
A priori, given a polynomial over a field, the behaviour of the roots (assuming it has roots) will be unknown. Newton polygons provide one technique for the study of the behaviour of the roots.
Let be a local field with discrete valuation and let
with . Then the Newton polygon of is defined to be the lower convex hull of the set of points
ignoring the points with . Restated geometrically, plot all of these points Pi on the xy-plane. Let's assume that the points indices increase from left to right (P0 is the leftmost point, Pn is the rightmost point). Then, starting at P0, draw a ray straight down parallel with the y-axis, and rotate this ray counter-clockwise until it hits the point Pk1 (not necessarily P1). Break the ray here. Now draw a second ray from Pk1 straight down parallel with the y-axis, and rotate this ray counter-clockwise until it hits the point Pk2. Continue until the process reaches the point Pn; the resulting polygon (containing the points P0, Pk1, Pk2, ..., Pkm, Pn) is the Newton polygon.
Another, perhaps more intuitive way to view this process is this : consider a rubber band surrounding all the points P0, ..., Pn. Stretch the band upwards, such that the band is stuck on its lower side by some of the points (the points act like nails, partially hammered into the xy plane). The vertices of the Newton polygon are exactly those points.
Read more about this topic: Newton Polygon
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)