Properties
The gravitational field at the star's surface is about 2×1011 times stronger than on Earth. Such a strong gravitational field acts as a gravitational lens and bends the radiation emitted by the star such that parts of the normally invisible rear surface become visible.
A fraction of the mass of a star that collapses to form a neutron star is released in the supernova explosion from which it forms (from the law of mass-energy equivalence, E = mc2). The energy comes from the gravitational binding energy of a neutron star.
Neutron star relativistic equations of state provided by Jim Lattimer include a graph of radius vs. mass for various models. The most likely radii for a given neutron star mass are bracketed by models AP4 (smallest radius) and MS2 (largest radius). BE is the ratio of gravitational binding energy mass equivalent to observed neutron star gravitational mass of "M" kilograms with radius "R" meters,
Given current values
and star masses "M" commonly reported as multiples of one solar mass,
then the relativistic fractional binding energy of a neutron star is
A two-solar-mass neutron star would not be more compact than 10,970 meters radius (AP4 model). Its mass fraction gravitational binding energy would then be 0.187, −18.7% (exothermic). This is not near 0.6/2 = 0.3, −30%.
A neutron star is so dense that one teaspoon (5 milliliters) of its material would have a mass over 5.5×1012 kg, about 900 times the mass of the Great Pyramid of Giza. The resulting force of gravity is so strong that if an object were to fall from a height of one meter it would only take one microsecond to hit the surface of the neutron star, and would do so at around 2000 kilometers per second, or 7.2 million kilometers per hour.
The temperature inside a newly formed neutron star is from around 1011 to 1012 kelvin. However, the huge number of neutrinos it emits carry away so much energy that the temperature falls within a few years to around 106 kelvin. Even at 1 million kelvin, most of the light generated by a neutron star is in X-rays. In visible light, neutron stars probably radiate approximately the same energy in all parts of visible spectrum, and therefore appear white.
The pressure increases from 3×1033 to 1.6×1035 Pa from the inner crust to the center.
The equation of state for a neutron star is still not known. It is assumed that it differs significantly from that of a white dwarf, whose EOS is that of a degenerate gas which can be described in close agreement with special relativity. However, with a neutron star the increased effects of general relativity can no longer be ignored. Several EOS have been proposed (FPS, UU, APR, L, SLy, and others) and current research is still attempting to constrain the theories to make predictions of neutron star matter. This means that the relation between density and mass is not fully known, and this causes uncertainties in radius estimates. For example, a 1.5 solar mass neutron star could have a radius of 10.7, 11.1, 12.1 or 15.1 kilometres (for EOS FPS, UU, APR or L respectively).
Read more about this topic: Neutron Star
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)