Instrumental and Sample Requirements
The technique requires a source of neutrons. Neutrons are usually produced in a nuclear reactor or spallation source. At a research reactor, other components are needed, including a crystal monochromators as well as filters to select the desired neutron wavelength. Some parts of the setup may also be movable. At a spallation source, the time of flight technique is used to sort the energies of the incident neutrons (higher energy neutrons are faster), so no monochromator is needed, but rather a series of aperture elements synchronized to filter neutron pulses with the desired wavelength.
The technique is most commonly performed as powder diffraction, which only requires a polycrystalline powder. For single crystal work, the crystals must be much larger than those used in X-ray crystallography. It is common to use crystals that are about 1 mm3.
Summarizing, the main disadvantage to neutron diffraction is the requirement for a nuclear reactor. For single crystal work, the technique requires relatively large crystals, which are usually challenging to grow. The main advantages to the technique are many - sensitivity to light atoms, ability to distinguish isotopes, absence of radiation damage.
Read more about this topic: Neutron Diffraction
Famous quotes containing the words instrumental and/or sample:
“I guard this box, as I would the instrumental parts of my religion, to help my mind on to something better.”
—Laurence Sterne (17131768)
“The present war having so long cut off all communication with Great-Britain, we are not able to make a fair estimate of the state of science in that country. The spirit in which she wages war is the only sample before our eyes, and that does not seem the legitimate offspring either of science or of civilization.”
—Thomas Jefferson (17431826)