Limit Superior
Limit superior and limit inferior of a net of real numbers can be defined in a similar manner as for sequences. Some authors work even with more general structures than the real line, like complete lattices.
For a net we put
Limit superior of a net of real numbers has many properties analogous to the case of sequences, e.g.
where equality holds whenever one of the nets is convergent.
Read more about this topic: Net (mathematics)
Famous quotes containing the words limit and/or superior:
“We live in oppressive times. We have, as a nation, become our own thought police; but instead of calling the process by which we limit our expression of dissent and wonder censorship, we call it concern for commercial viability.”
—David Mamet (b. 1947)
“The man who takes the liberty to live is superior to all the laws, by virtue of his relation to the lawmaker.”
—Henry David Thoreau (18171862)