Examples
Sequence in a topological space:
A sequence (a1, a2, ...) in a topological space V can be considered a net in V defined on N.
The net is eventually in a subset Y of V if there exists an N in N such that for every n ≥ N, the point an is in Y.
We have limx → c an = L if and only if for every neighborhood Y of L, the net is eventually in Y.
The net is frequently in a subset Y of V if and only if for every N in N there exists some n ≥ N such that an is in Y, that is, if and only if infinitely many elements of the sequence are in Y. Thus a point y in V is a cluster point of the net if and only if every neighborhood Y of y contains infinitely many elements of the sequence.
Function from a metric space to a topological space:
Consider a function from a metric space M to a topological space V, and a point c of M. We direct the set M\{c} reversely according to distance from c, that is, the relation is "has at least the same distance to c as", so that "large enough" with respect to the relation means "close enough to c". The function ƒ is a net in V defined on M\{c}.
The net ƒ is eventually in a subset Y of V if there exists an a in M\{c} such that for every x in M\{c} with d(x,c) ≤ d(a,c), the point f(x) is in Y.
We have limx → c ƒ(x) = L if and only if for every neighborhood Y of L, ƒ is eventually in Y.
The net ƒ is frequently in a subset Y of V if and only if for every a in M\{c} there exists some x in M\{c} with d(x,c) ≤ d(a,c) such that f(x) is in Y.
A point y in V is a cluster point of the net ƒ if and only if for every neighborhood Y of y, the net is frequently in Y.
Function from a well-ordered set to a topological space:
Consider a well-ordered set with limit point c, and a function ƒ from [0, c) to a topological space V. This function is a net on [0, c).
It is eventually in a subset Y of V if there exists an a in [0, c) such that for every x ≥ a, the point f(x) is in Y.
We have limx → c ƒ(x) = L if and only if for every neighborhood Y of L, ƒ is eventually in Y.
The net ƒ is frequently in a subset Y of V if and only if for every a in [0, c) there exists some x in [a, c) such that f(x) is in Y.
A point y in V is a cluster point of the net ƒ if and only if for every neighborhood Y of y, the net is frequently in Y.
The first example is a special case of this with c = ω.
See also ordinal-indexed sequence.
Read more about this topic: Net (mathematics)
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)