Neighbor Joining - Advantages and Disadvantages

Advantages and Disadvantages

The main virtue of NJ is that it is fast, due in part to its being a polynomial-time algorithm. This makes it practical for analyzing large data sets (hundreds or thousands of taxa) and for bootstrapping, for which purposes other means of analysis (e.g. maximum parsimony, maximum likelihood) may be computationally prohibitive.

Neighbor joining has the property that if the input distance matrix is correct, then the output tree will be correct. Furthermore the correctness of the output tree topology is guaranteed as long as the distance matrix is 'nearly additive', specifically if each entry in the distance matrix differs from the true distance by less than half of the shortest branch length in the tree. In practice the distance matrix rarely satisfies this condition, but neighbor joining often constructs the correct tree topology anyway. The correctness of neighbor joining for nearly additive distance matrices implies that it is statistically consistent under many models of evolution; given data of sufficient length, neighbor joining will reconstruct the true tree with high probability. Compared with UPGMA, neighbor joining has the advantage that it does not assume all lineages evolve at the same rate (molecular clock hypothesis).

Nevertheless, neighbor joining has been largely superseded by phylogenetic methods that do not rely on distance measures and offer superior accuracy under most conditions. Neighbor joining has the undesirable feature that it often assigns negative lengths to some of the branches.

Read more about this topic:  Neighbor Joining

Famous quotes containing the word advantages:

    ... is it not clear that to give to such women as desire it and can devote themselves to literary and scientific pursuits all the advantages enjoyed by men of the same class will lessen essentially the number of thoughtless, idle, vain and frivolous women and thus secure the [sic] society the services of those who now hang as dead weight?
    Sarah M. Grimke (1792–1873)