Examples
Let X be the set N of natural numbers, and let a subset of N be negligible if it is finite. Then the negligible sets form an ideal. This idea can be applied to any infinite set; but if applied to a finite set, every subset will be negligible, which is not a very useful notion.
Or let X be an uncountable set, and let a subset of X be negligible if it is countable. Then the negligible sets form a sigma-ideal.
Let X be a measurable space equipped with a measure m, and let a subset of X be negligible if it is m-null. Then the negligible sets form a sigma-ideal. Every sigma-ideal on X can be recovered in this way by placing a suitable measure on X, although the measure may be rather pathological.
Let X be the set R of real numbers, and let a subset A of R be negligible if for each ε > 0, there exists a finite or countable collection I1, I2, … of (possibly overlapping) intervals satisfying:
and
This is a special case of the preceding example, using Lebesgue measure, but described in elementary terms.
Let X be a topological space, and let a subset be negligible if it is of first category, that is, if it is a countable union of nowhere-dense sets (where a set is nowhere-dense if it is not dense in any open set). Then the negligible sets form a sigma-ideal. X is a Baire space if the interior of every such negligible set is empty.
Let X be a directed set, and let a subset of X be negligible if it has an upper bound. Then the negligible sets form an ideal. The first example is a special case of this using the usual ordering of N.
In a coarse structure, the controlled sets are negligible.
Read more about this topic: Negligible Set
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)