Examples
Let X be the set N of natural numbers, and let a subset of N be negligible if it is finite. Then the negligible sets form an ideal. This idea can be applied to any infinite set; but if applied to a finite set, every subset will be negligible, which is not a very useful notion.
Or let X be an uncountable set, and let a subset of X be negligible if it is countable. Then the negligible sets form a sigma-ideal.
Let X be a measurable space equipped with a measure m, and let a subset of X be negligible if it is m-null. Then the negligible sets form a sigma-ideal. Every sigma-ideal on X can be recovered in this way by placing a suitable measure on X, although the measure may be rather pathological.
Let X be the set R of real numbers, and let a subset A of R be negligible if for each ε > 0, there exists a finite or countable collection I1, I2, … of (possibly overlapping) intervals satisfying:
and
This is a special case of the preceding example, using Lebesgue measure, but described in elementary terms.
Let X be a topological space, and let a subset be negligible if it is of first category, that is, if it is a countable union of nowhere-dense sets (where a set is nowhere-dense if it is not dense in any open set). Then the negligible sets form a sigma-ideal. X is a Baire space if the interior of every such negligible set is empty.
Let X be a directed set, and let a subset of X be negligible if it has an upper bound. Then the negligible sets form an ideal. The first example is a special case of this using the usual ordering of N.
In a coarse structure, the controlled sets are negligible.
Read more about this topic: Negligible Set
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)