Derived Concepts
Let X be a set, and let I be an ideal of negligible subsets of X. If p is a proposition about the elements of X, then p is true almost everywhere if the set of points where p is true is the complement of a negligible set. That is, p may not always be true, but it's false so rarely that this can be ignored for the purposes at hand.
If f and g are functions from X to the same space Y, then f and g are equivalent if they are equal almost everywhere. To make the introductory paragraph precise, then, let X be N, and let the negligible sets be the finite sets. Then f and g are sequences. If Y is a topological space, then f and g have the same limit, or both have none. (When you generalise this to a directed sets, you get the same result, but for nets.) Or, let X be a measure space, and let negligible sets be the null sets. If Y is the real line R, then either f and g have the same integral, or neither integral is defined.
Read more about this topic: Negligible Set
Famous quotes containing the words derived and/or concepts:
“The sceptics assert, though absurdly, that the origin of all religious worship was derived from the utility of inanimate objects, as the sun and moon, to the support and well-being of mankind.”
—David Hume (17111776)
“Germany collapsed as a result of having engaged in a struggle for empire with the concepts of provincial politics.”
—Albert Camus (19131960)