Derived Concepts
Let X be a set, and let I be an ideal of negligible subsets of X. If p is a proposition about the elements of X, then p is true almost everywhere if the set of points where p is true is the complement of a negligible set. That is, p may not always be true, but it's false so rarely that this can be ignored for the purposes at hand.
If f and g are functions from X to the same space Y, then f and g are equivalent if they are equal almost everywhere. To make the introductory paragraph precise, then, let X be N, and let the negligible sets be the finite sets. Then f and g are sequences. If Y is a topological space, then f and g have the same limit, or both have none. (When you generalise this to a directed sets, you get the same result, but for nets.) Or, let X be a measure space, and let negligible sets be the null sets. If Y is the real line R, then either f and g have the same integral, or neither integral is defined.
Read more about this topic: Negligible Set
Famous quotes containing the words derived and/or concepts:
“All moral discipline, all moral perfection derived from the soul of literature.”
—Thomas Mann (18751955)
“It is impossible to dissociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept, a word is needed; to portray a phenomenon, a concept is needed. All three mirror one and the same reality.”
—Antoine Lavoisier (17431794)