Heat and Molecular Energy Distribution
Negative temperatures can only exist in a system where there are a limited number of energy states (see below). As the temperature is increased on such a system, particles move into higher and higher energy states, and as the temperature increases, the number of particles in the lower energy states and in the higher energy states approaches equality. (This is a consequence of the definition of temperature in statistical mechanics for systems with limited states.) By injecting energy into these systems in the right fashion, it is possible to create a system in which there are more particles in the higher energy states than in the lower ones. The system can then be characterised as having a negative temperature. A substance with a negative temperature is not colder than absolute zero, but rather it is hotter than infinite temperature. As Kittel and Kroemer (p. 462) put it, "The temperature scale from cold to hot runs:
- +0 K, . . ., +300 K, . . ., +∞ K, −∞ K, . . ., −300 K, . . ., −0 K."
Generally, temperature as it is felt is defined by the kinetic energy of atoms. Since there is no upper bound on momentum of an atom there is no upper bound to the number of energy states available if enough energy is added, and no way to get to a negative temperature. However, temperature is more generally defined by statistical mechanics than just kinetic energy (see below). The inverse temperature β = 1/kT (where k is Boltzmann's constant) scale runs continuously from low energy to high as +∞, . . ., −∞.
Read more about this topic: Negative Temperature
Famous quotes containing the words heat and, heat, energy and/or distribution:
“The LORD will afflict you with consumption, fever, inflammation, with fiery heat and drought, and with blight and mildew...”
—Bible: Hebrew, Deuteronomy 28:22.
“Were having a heat wave, a tropical heat wave.”
—Irving Berlin (18881989)
“The persons who constitute the natural aristocracy, are not found in the actual aristocracy, or, only on its edge; as the chemical energy of the spectrum is found to be greatest just outside of the spectrum.”
—Ralph Waldo Emerson (18031882)
“There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.”
—Ralph Waldo Emerson (18031882)