Formal Construction of Negative Integers
See also: Integer#ConstructionIn a similar manner to rational numbers, we can extend the natural numbers N to the integers Z by defining integers as an ordered pair of natural numbers (a, b). We can extend addition and multiplication to these pairs with the following rules:
- (a, b) + (c, d) = (a + c, b + d)
- (a, b) × (c, d) = (a × c + b × d, a × d + b × c)
We define an equivalence relation ~ upon these pairs with the following rule:
- (a, b) ~ (c, d) if and only if a + d = b + c.
This equivalence relation is compatible with the addition and multiplication defined above, and we may define Z to be the quotient set N²/~, i.e. we identify two pairs (a, b) and (c, d) if they are equivalent in the above sense. Note that Z, equipped with these operations of addition and multiplication, is a ring, and is in fact, the prototypical example of a ring.
We can also define a total order on Z by writing
- (a, b) ≤ (c, d) if and only if a + d ≤ b + c.
This will lead to an additive zero of the form (a, a), an additive inverse of (a, b) of the form (b, a), a multiplicative unit of the form (a + 1, a), and a definition of subtraction
- (a, b) − (c, d) = (a + d, b + c).
This construction is a special case of the Grothendieck construction.
Read more about this topic: Negative Number
Famous quotes containing the words formal, construction and/or negative:
“On every formal visit a child ought to be of the party, by way of provision for discourse.”
—Jane Austen (17751817)
“When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.”
—Edmund Burke (17291797)
“The negative always wins at last, but I like it none the better for that.”
—Mason Cooley (b. 1927)