Negation Normal Form

Negation normal form is an elementary canonical form in mathematical logic. There are similar requirements for negation normal form in different logic fragments.

In predicate logic, a logical formula is in negation normal form if negation occurs only immediately above elementary propositions, and {} are the only allowed Boolean connectives. In classical logic each formula can be brought into this form by replacing implications and equivalences by their definitions, using De Morgan's laws to push negation inside, and eliminating double negations. This process can be represented using the following rewrite rules:

A formula in negation normal form can be put into the stronger conjunctive normal form or disjunctive normal form by applying the distributivity laws.

Famous quotes containing the words negation, normal and/or form:

    An “unemployed” existence is a worse negation of life than death itself.
    José Ortega Y Gasset (1883–1955)

    Love brings to light the lofty and hidden characteristics of the lover—what is rare and exceptional in him: to that extent it can easily be deceptive with respect to what is normal in him.
    Friedrich Nietzsche (1844–1900)

    ... the novel is called upon like no other art form to incorporate the intellectual content of an age.
    Robert Musil (1880–1942)