Simultaneous Necessity and Sufficiency
See also: Material equivalenceTo say that P is necessary and sufficient for Q is to say two things, that P is necessary for Q and that P is sufficient for Q. Of course, it may instead be understood to say a different two things, namely that each of P and Q is necessary for the other. And it may be understood in a third equivalent way: as saying that each is sufficient for the other. One may summarize any—and thus all—of these cases by the statement "P if and only if Q," which is denoted by P Q.
For example, in graph theory a graph G is called bipartite if it is possible to assign to each of its vertices the color black or white in such a way that every edge of G has one endpoint of each color. And for any graph to be bipartite, it is a necessary and sufficient condition that it contain no odd-length cycles. Thus, discovering whether a graph has any odd cycles tells one whether it is bipartite and vice versa. A philosopher might characterize this state of affairs thus: "Although the concepts of bipartiteness and absence of odd cycles differ in intension, they have identical extension.
Read more about this topic: Necessity And Sufficiency
Famous quotes containing the words simultaneous, necessity and/or sufficiency:
“Ours is a brandnew world of allatonceness. Time has ceased, space has vanished. We now live in a global village ... a simultaneous happening.”
—Marshall McLuhan (19111980)
“To expect to increase prices and then to maintain them at a higher level by means of a plan which must of necessity increase production while decreasing consumption is to fly in the face of an economic law as well established as any law of nature.”
—Calvin Coolidge (18721933)
“The worthiest man to be known, and for a pattern to be presented to the world, he is the man of whom we have most certain knowledge. He hath been declared and enlightened by the most clear-seeing men that ever were; the testimonies we have of him are in faithfulness and sufficiency most admirable.”
—Michel de Montaigne (15331592)