Essential Specifications
NFC is a set of short-range wireless technologies, typically requiring a distance of 4 cm or less. NFC operates at 13.56 MHz on ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to 424 kbit/s. NFC always involves an initiator and a target; the initiator actively generates an RF field that can power a passive target. This enables NFC targets to take very simple form factors such as tags, stickers, key fobs, or cards that do not require batteries. NFC peer-to-peer communication is possible, provided both devices are powered. A patent licensing program for NFC is currently under development by Via Licensing Corporation, an independent subsidiary of Dolby Laboratories. A public, platform-independent NFC library is released under the free GNU Lesser General Public License by the name libnfc.
NFC tags contain data and are typically read-only, but may be rewriteable. They can be custom-encoded by their manufacturers or use the specifications provided by the NFC Forum, an industry association charged with promoting the technology and setting key standards. The tags can securely store personal data such as debit and credit card information, loyalty program data, PINs and networking contacts, among other information. The NFC Forum defines four types of tags that provide different communication speeds and capabilities in terms of configurability, memory, security, data retention and write endurance. Tags currently offer between 96 and 4,096 bytes of memory.
- As with proximity card technology, near-field communication uses magnetic induction between two loop antennas located within each other's near field, effectively forming an air-core transformer. It operates within the globally available and unlicensed radio frequency ISM band of 13.56 MHz. Most of the RF energy is concentrated in the allowed ±7 kHz bandwidth range, but the full spectral envelope may be as wide as 1.8 MHz when using ASK modulation.
- Theoretical working distance with compact standard antennas: up to 20 cm (practical working distance of about 4 centimetres)
- Supported data rates: 106, 212 or 424 kbit/s (the bit rate 848 kbit/s is not compliant with the standard ISO/IEC 18092)
- There are two modes:
- Passive communication mode: The initiator device provides a carrier field and the target device answers by modulating the existing field. In this mode, the target device may draw its operating power from the initiator-provided electromagnetic field, thus making the target device a transponder.
- Active communication mode: Both initiator and target device communicate by alternately generating their own fields. A device deactivates its RF field while it is waiting for data. In this mode, both devices typically have power supplies.
Speed | Active device | passive device |
---|---|---|
424 kbit/s | Manchester, 10% ASK | Manchester, 10% ASK |
212 kbit/s | Manchester, 10% ASK | Manchester, 10% ASK |
106 kbit/s | Modified Miller, 100% ASK | Manchester, 10% ASK |
- NFC employs two different codings to transfer data. If an active device transfers data at 106 kbit/s, a modified Miller coding with 100% modulation is used. In all other cases Manchester coding is used with a modulation ratio of 10%.
- NFC devices are able to receive and transmit data at the same time. Thus, they can check for potential collisions, if the received signal frequency does not match with the transmitted signal's frequency.
Read more about this topic: Near Field Communication
Famous quotes containing the word essential:
“The first essential in writing about anything is that the writer should have no experience of the matter.”
—Isadora Duncan (18781927)