Natural Units - Notation and Use - Advantages and Disadvantages

Advantages and Disadvantages

Compared to SI or other unit systems, natural units have both advantages and disadvantages:

  • Simplified equations: By setting constants to 1, equations containing those constants appear more compact and in some cases may be simpler to understand. For example, the special relativity equation E2 = p2c2 + m2c4 appears somewhat complicated, but the natural units version, E2 = p2 + m2, appears simpler.
  • Physical interpretation: Natural unit systems automatically subsume dimensional analysis. For example, in Planck units, the units are defined by properties of quantum mechanics and gravity. Not coincidentally, the Planck unit of length is approximately the distance at which quantum gravity effects become important. Likewise, atomic units are based on the mass and charge of an electron, and not coincidentally the atomic unit of length is the Bohr radius describing the orbit of the electron in a hydrogen atom.
  • No prototypes: A prototype is a physical object that defines a unit, such as the International Prototype Kilogram, a physical cylinder of metal whose mass is by definition exactly one kilogram. A prototype definition always has imperfect reproducibility between different places and between different times, and it is an advantage of natural unit systems that they use no prototypes. (They share this advantage with other non-natural unit systems, such as conventional electrical units.)
  • Less precise measurements: SI units are designed to be used in precision measurements. For example, the second is defined by an atomic transition frequency in cesium atoms, because this transition frequency can be precisely reproduced with atomic clock technology. Natural unit systems are generally not based on quantities that can be precisely reproduced in a lab. Therefore, in order to retain the same degree of precision, the fundamental constants used still have to be measured in a laboratory in terms of physical objects that can be directly observed. If this is not possible, then a quantity expressed in natural units can be less precise than the same quantity expressed in SI units. For example, Planck units use the gravitational constant G, which is measurable in a laboratory only to four significant digits.
  • Greater ambiguity: Consider the equation a = 1010 in Planck units. If a represents a length, then the equation means a = 1.6×10−25 m. If a represents a mass, then the equation means a = 220 kg. Therefore, if the variable a was not clearly defined, then the equation a = 1010 might be misinterpreted. By contrast, in SI units, the equation would be (for example) a = 220 kg, and it would be clear that a represents a mass, not a length or anything else. In fact, natural units are especially useful when this ambiguity is deliberate: For example, in special relativity space and time are so closely related that it can be useful not to have to specify whether a variable represents a distance or a time.

Read more about this topic:  Natural Units, Notation and Use

Famous quotes containing the word advantages:

    ... there are no chains so galling as the chains of ignorance—no fetters so binding as those that bind the soul, and exclude it from the vast field of useful and scientific knowledge. O, had I received the advantages of early education, my ideas would, ere now, have expanded far and wide; but, alas! I possess nothing but moral capability—no teachings but the teachings of the Holy Spirit.
    Maria Stewart (1803–1879)