Evolution By Means of Natural Selection
A prerequisite for natural selection to result in adaptive evolution, novel traits and speciation, is the presence of heritable genetic variation that results in fitness differences. Genetic variation is the result of mutations, recombinations and alterations in the karyotype (the number, shape, size and internal arrangement of the chromosomes). Any of these changes might have an effect that is highly advantageous or highly disadvantageous, but large effects are very rare. In the past, most changes in the genetic material were considered neutral or close to neutral because they occurred in noncoding DNA or resulted in a synonymous substitution. However, recent research suggests that many mutations in non-coding DNA do have slight deleterious effects. Although both mutation rates and average fitness effects of mutations are dependent on the organism, estimates from data in humans have found that a majority of mutations are slightly deleterious.
By the definition of fitness, individuals with greater fitness are more likely to contribute offspring to the next generation, while individuals with lesser fitness are more likely to die early or fail to reproduce. As a result, alleles that on average result in greater fitness become more abundant in the next generation, while alleles that in general reduce fitness become rarer. If the selection forces remain the same for many generations, beneficial alleles become more and more abundant, until they dominate the population, while alleles with a lesser fitness disappear. In every generation, new mutations and re-combinations arise spontaneously, producing a new spectrum of phenotypes. Therefore, each new generation will be enriched by the increasing abundance of alleles that contribute to those traits that were favored by selection, enhancing these traits over successive generations.
Some mutations occur in so-called regulatory genes. Changes in these can have large effects on the phenotype of the individual because they regulate the function of many other genes. Most, but not all, mutations in regulatory genes result in non-viable zygotes. Examples of nonlethal regulatory mutations occur in HOX genes in humans, which can result in a cervical rib or polydactyly, an increase in the number of fingers or toes. When such mutations result in a higher fitness, natural selection will favor these phenotypes and the novel trait will spread in the population.
Established traits are not immutable; traits that have high fitness in one environmental context may be much less fit if environmental conditions change. In the absence of natural selection to preserve such a trait, it will become more variable and deteriorate over time, possibly resulting in a vestigial manifestation of the trait, also called evolutionary baggage. In many circumstances, the apparently vestigial structure may retain a limited functionality, or may be co-opted for other advantageous traits in a phenomenon known as preadaptation. A famous example of a vestigial structure, the eye of the blind mole rat, is believed to retain function in photoperiod perception.
Read more about this topic: Natural Selection
Famous quotes containing the words evolution, means, natural and/or selection:
“The evolution of a highly destined society must be moral; it must run in the grooves of the celestial wheels.”
—Ralph Waldo Emerson (18031882)
“Justice must always question itself, just as society can exist only by means of the work it does on itself and on its institutions.”
—Michel Foucault (19261984)
“Some natural tears they dropped, but wiped them soon;
The world was all before them, where to choose
Their place of rest, and Providence their guide;
They, hand in hand, with wandering steps and slow
Through Eden took their solitary way.”
—John Milton (16081674)
“When you consider the radiance, that it does not withhold
itself but pours its abundance without selection into every
nook and cranny”
—Archie Randolph Ammons (b. 1926)