Generalizations
Two generalizations of natural numbers arise from the two uses:
- A natural number can be used to express the size of a finite set; more generally a cardinal number is a measure for the size of a set also suitable for infinite sets; this refers to a concept of "size" such that if there is a bijection between two sets they have the same size. The set of natural numbers itself and any other countably infinite set has cardinality aleph-null .
- Linguistic ordinal numbers "first", "second", "third" can be assigned to the elements of a totally ordered finite set, and also to the elements of well-ordered countably infinite sets like the set of natural numbers itself. This can be generalized to ordinal numbers which describe the position of an element in a well-ordered set in general. An ordinal number is also used to describe the "size" of a well-ordered set, in a sense different from cardinality: if there is an order isomorphism between two well-ordered sets they have the same ordinal number. The first ordinal number that is not a natural number is expressed as ; this is also the ordinal number of the set of natural numbers itself.
Many well-ordered sets with cardinal number have an ordinal number greater than ω (the latter is the lowest possible). The least ordinal of cardinality (i.e., the initial ordinal) is .
For finite well-ordered sets, there is one-to-one correspondence between ordinal and cardinal numbers; therefore they can both be expressed by the same natural number, the number of elements of the set. This number can also be used to describe the position of an element in a larger finite, or an infinite, sequence.
Hypernatural numbers are part of a non-standard model of arithmetic due to Skolem.
Other generalizations are discussed in the article on numbers.
Read more about this topic: Natural Number