Motivation
Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise Principia Mathematica. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to different notations such as Fitch-style calculus (or Fitch's diagrams) or Suppes' method of which e.g. Lemmon gave a variant called system L.
Natural deduction in its modern form was independently proposed by the German mathematician Gentzen in 1935, in a dissertation delivered to the faculty of mathematical sciences of the university of Göttingen. The term natural deduction (or rather, its German equivalent natürliches Schließen) was coined in that paper:
Ich wollte zunächst einmal einen Formalismus aufstellen, der dem wirklichen Schließen möglichst nahe kommt. So ergab sich ein "Kalkül des natürlichen Schließens".(First I wished to construct a formalism that comes as close as possible to actual reasoning. Thus arose a "calculus of natural deduction".) —Gentzen, Untersuchungen über das logische Schließen (Mathematische Zeitschrift 39, pp.176–210, 1935)
Gentzen was motivated by a desire to establish the consistency of number theory. He was unable to prove the main result required for the consistency result, the cut elimination theorem - the Hauptsatz - directly for Natural Deduction. For this reason he introduced his alternative system, the sequent calculus for which he proves the Hauptsatz both for classical and intuitionistic logic. In a series of seminars in 1961 and 1962 Prawitz gave a comprehensive summary of natural deduction calculi, and transported much of Gentzen's work with sequent calculi into the natural deduction framework. His 1965 monograph Natural deduction: a proof-theoretical study was to become a reference work on natural deduction, and included applications for modal and second-order logic.
In natural deduction, a proposition is deduced from a collection of premises by applying inference rules repeatedly. The system presented in this article is a minor variation of Gentzen's or Prawitz's formulation, but with a closer adherence to Martin-Löf's description of logical judgments and connectives (Martin-Löf, 1996).
Read more about this topic: Natural Deduction
Famous quotes containing the word motivation:
“Self-determination has to mean that the leader is your individual gut, and heart, and mind or were talking about power, again, and its rather well-known impurities. Who is really going to care whether you live or die and who is going to know the most intimate motivation for your laughter and your tears is the only person to be trusted to speak for you and to decide what you will or will not do.”
—June Jordan (b. 1939)