Natural Deduction - Classical and Modal Logics

Classical and Modal Logics

For simplicity, the logics presented so far have been intuitionistic. Classical logic extends intuitionistic logic with an additional axiom or principle of excluded middle:

For any proposition p, the proposition p ∨ ¬p is true.

This statement is not obviously either an introduction or an elimination; indeed, it involves two distinct connectives. Gentzen's original treatment of excluded middle prescribed one of the following three (equivalent) formulations, which were already present in analogous forms in the systems of Hilbert and Heyting:

-------------- XM1 A ∨ ¬A true ¬¬A true ---------- XM2 A true -------- u ¬A true ⋮ p true ------ XM3u, p A true

(XM3 is merely XM2 expressed in terms of E.) This treatment of excluded middle, in addition to being objectionable from a purist's standpoint, introduces additional complications in the definition of normal forms.

A comparatively more satisfactory treatment of classical natural deduction in terms of introduction and elimination rules alone was first proposed by Parigot in 1992 in the form of a classical lambda calculus called λμ. The key insight of his approach was to replace a truth-centric judgement A true with a more classical notion, reminiscent of the sequent calculus: in localised form, instead of Γ ⊢ A, he used Γ ⊢ Δ, with Δ a collection of propositions similar to Γ. Γ was treated as a conjunction, and Δ as a disjunction. This structure is essentially lifted directly from classical sequent calculi, but the innovation in λμ was to give a computational meaning to classical natural deduction proofs in terms of a callcc or a throw/catch mechanism seen in LISP and its descendants. (See also: first class control.)

Another important extension was for modal and other logics that need more than just the basic judgement of truth. These were first described, for the alethic modal logics S4 and S5, in a natural deduction style by Prawitz in 1965, and have since accumulated a large body of related work. To give a simple example, the modal logic S4 requires one new judgement, "A valid", that is categorical with respect to truth:

If "A true" under no assumptions of the form "B true", then "A valid".

This categorical judgement is internalised as a unary connective ◻A (read "necessarily A") with the following introduction and elimination rules:

A valid -------- ◻I ◻ A true ◻ A true -------- ◻E A true

Note that the premise "A valid" has no defining rules; instead, the categorical definition of validity is used in its place. This mode becomes clearer in the localised form when the hypotheses are explicit. We write "Ω;Γ ⊢ A true" where Γ contains the true hypotheses as before, and Ω contains valid hypotheses. On the right there is just a single judgement "A true"; validity is not needed here since "Ω ⊢ A valid" is by definition the same as "Ω;⋅ ⊢ A true". The introduction and elimination forms are then:

Ω;⋅ ⊢ π : A true -------------------- ◻I Ω;⋅ ⊢ box π : ◻ A true Ω;Γ ⊢ π : ◻ A true ---------------------- ◻E Ω;Γ ⊢ unbox π : A true

The modal hypotheses have their own version of the hypothesis rule and substitution theorem.

------------------------------- valid-hyp Ω, u: (A valid) ; Γ ⊢ u : A true
Modal substitution theorem
If Ω;⋅ ⊢ π1 : A true and Ω, u: (A valid) ; Γ ⊢ π2 : C true, then Ω;Γ ⊢ π2 : C true.

This framework of separating judgements into distinct collections of hypotheses, also known as multi-zoned or polyadic contexts, is very powerful and extensible; it has been applied for many different modal logics, and also for linear and other substructural logics, to give a few examples. However, relatively few systems of modal logic can be formalised directly in natural deduction. To give proof-theoretic characterisations of these systems, extensions such as labelling or systems of deep inference.

The addition of labels to formulae permits much finer control of the conditions under which rules apply, allowing the more flexible techniques of analytic tableaux to be applied, as has been done in the case of labelled deduction. Labels also allow the naming of worlds in Kripke semantics; Simpson (1993) presents an influential technique for converting frame conditions of modal logics in Kripke semantics into inference rules in a natural deduction formalisation of hybrid logic. Stouppa (2004) surveys the application of many proof theories, such as Avron and Pottinger's hypersequents and Belnap's display logic to such modal logics as S5 and B.

Read more about this topic:  Natural Deduction

Famous quotes containing the words classical and/or logics:

    Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.
    Johann Wolfgang Von Goethe (1749–1832)

    When logics die,
    The secret of the soil grows through the eye,
    And blood jumps in the sun;
    Above the waste allotments the dawn halts.
    Dylan Thomas (1914–1953)