Napier's Bones - Multiplication

Multiplication

Given the described set of rods, suppose that we wish to calculate the product of 46785399 and 7. Place inside the board the rods corresponding to 46785399, as shown in the diagram, and read the result in the horizontal strip in row 7, as marked on the side of the board. To obtain the product, simply note, for each place from right to left, the numbers found by adding the digits within the diagonal sections of the strip (using carry-over where the sum is 10 or greater).

From right to left, we obtain the units place (3), the tens (6+3=9), the hundreds (6+1=7), etc. Note that in the hundred thousands place, where 5+9=14, we note '4' and carry '1' to the next addition (similarly with 4+8=12 in the ten millions place).

In cases where a digit of the multiplicand is 0, we leave a space between the rods corresponding to where a 0 rod would be. Let us suppose that we want to multiply the previous number by 96431; operating analogously to the previous case, we will calculate partial products of the number by multiplying 46785399 by 9, 6, 4, 3 and 1. Then we place these products in the appropriate positions, and add them using the simple pencil-and-paper method.

This method can also be used for multiplying decimals. For a decimal value multiplied by an integer (whole number) value ensure that the decimal number is written along the top of the grid. From this position the decimal point simply drops down the vertical line and 'falls' into the answer.

When multiplying two decimal numbers together, the decimal points travel horizontally and vertically until they 'meet' at a diagonal line, the point then travels out of the grid in the same method and again 'falls' into the answer.

The form of multiplication was also used in the 1202 Liber Abaci and 800 AD Islamic mathematics and known under the name of lattice multiplication. "Crest of the Peacock", by G.G, Joseph, suggests that Napier learned the details of this method from "Treviso Arithmetic", written in 1499....

Read more about this topic:  Napier's Bones