Nanoelectromechanical System - Simulations

Simulations

Computer simulations have long been important counterparts to experimental studies of NEMS devices. Through continuum mechanics and molecular dynamics (MD), important behaviors of NEMS devices can be predicted via computational modeling before engaging in experiments. Additionally, combining continuum and MD techniques enables engineers to efficiently analyze the stability of NEMS devices without resorting to ultra-fine meshes and time-intensive simulations. Simulations have other advantages as well: they do not require the time and expertise associated with fabricating NEMS devices; they can effectively predict the interrelated roles of various electromechanical effects; and parametric studies can be conducted fairly readily as compared with experimental approaches. For example, computational studies have predicted the charge distributions and “pull-in” electromechanical responses of NEMS devices. Using simulations to predict mechanical and electrical behavior of these devices can help optimize NEMS device design parameters.

Read more about this topic:  Nanoelectromechanical System