Mathematical Formulation of The n-body Problem
The general n-body problem of celestial mechanics is an initial-value problem for ordinary differential equations. Given initial values for the positions and velocities of n particles (j = 1,...,n) with for all mutually distinct j and k, find the solution of the second order system
where are constants representing the masses of n point-masses, are 3-dimensional vector functions of the time variable t, describing the positions of the point masses, and G is the gravitational constant. This equation is Newton's second law of motion; the left-hand side is the mass times acceleration for the jth particle, whereas the right-hand side is the sum of the forces on that particle. The forces are assumed here to be gravitational and given by Newton's law of universal gravitation; thus, they are proportional to the masses involved, and vary as the inverse square of the distance between the masses. The power in the denominator is three instead of two to balance the vector difference in the numerator, which is used to specify the direction of the force.
For every solution of the problem, not only applying an isometry or a time shift but also a reversal of time (unlike in the case of friction) gives a solution as well.
For n = 2, the problem was completely solved by Johann Bernoulli (see Two-body problem below).
Read more about this topic: n-body Problem
Famous quotes containing the words mathematical, formulation and/or problem:
“It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.”
—Henry David Thoreau (18171862)
“You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.”
—Gerard Manley Hopkins (18441889)
“What happened at Hiroshima was not only that a scientific breakthrough ... had occurred and that a great part of the population of a city had been burned to death, but that the problem of the relation of the triumphs of modern science to the human purposes of man had been explicitly defined.”
—Archibald MacLeish (18921982)