Factor Analysis
Overview: Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables to a smaller number of factors. Factor analysis originated a century ago with Charles Spearman's attempts to show that a wide variety of mental tests could be explained by a single underlying intelligence factor.
Applications:
• To reduce a large number of variables to a smaller number of factors for data modeling
• To validate a scale or index by demonstrating that its constituent items load on the same factor, and to drop proposed scale items which cross-load on more than one factor.
• To select a subset of variables from a larger set, based on which original variables have the highest correlations with some other factors.
• To create a set of factors to be treated as uncorrelated variables as one approach to handling multi-collinearity in such procedures as multiple regression
Factor analysis is part of the general linear model (GLM) family of procedures and makes many of the same assumptions as multiple regression, but it uses multiple outcomes.
Read more about this topic: Multivariate Analysis
Famous quotes containing the words factor and/or analysis:
“You factor in racism as a reality and you keep moving.”
—Jewell Jackson McCabe (b. 1945)
“Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.”
—Joan Didion (b. 1934)