Factor Analysis
Overview: Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables to a smaller number of factors. Factor analysis originated a century ago with Charles Spearman's attempts to show that a wide variety of mental tests could be explained by a single underlying intelligence factor.
Applications:
• To reduce a large number of variables to a smaller number of factors for data modeling
• To validate a scale or index by demonstrating that its constituent items load on the same factor, and to drop proposed scale items which cross-load on more than one factor.
• To select a subset of variables from a larger set, based on which original variables have the highest correlations with some other factors.
• To create a set of factors to be treated as uncorrelated variables as one approach to handling multi-collinearity in such procedures as multiple regression
Factor analysis is part of the general linear model (GLM) family of procedures and makes many of the same assumptions as multiple regression, but it uses multiple outcomes.
Read more about this topic: Multivariate Analysis
Famous quotes containing the words factor and/or analysis:
“Children of the middle years do not do their learning unaffected by attendant feelings of interest, boredom, success, failure, chagrin, joy, humiliation, pleasure, distress and delight. They are whole children responding in a total way, and what they feel is a constant factor that can be constructive or destructive in any learning situation.”
—Dorothy H. Cohen (20th century)
“The spider-mind acquires a faculty of memory, and, with it, a singular skill of analysis and synthesis, taking apart and putting together in different relations the meshes of its trap. Man had in the beginning no power of analysis or synthesis approaching that of the spider, or even of the honey-bee; but he had acute sensibility to the higher forces.”
—Henry Brooks Adams (18381918)