Multiplicative Function

In number theory, a multiplicative function is an arithmetic function f(n) of the positive integer n with the property that f(1) = 1 and whenever a and b are coprime, then

f(ab) = f(a) f(b).

An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a) f(b) holds for all positive integers a and b, even when they are not coprime.

Read more about Multiplicative Function:  Examples, Properties, Convolution

Famous quotes containing the word function:

    “... The state’s one function is to give.
    The bud must bloom till blowsy blown
    Its petals loosen and are strown;
    And that’s a fate it can’t evade
    Unless ‘twould rather wilt than fade.”
    Robert Frost (1874–1963)