Shift and Add
Historically, computers used a "shift and add" algorithm for multiplying small integers. Both base 2 long multiplication and base 2 peasant multiplication reduce to this same algorithm. In base 2, multiplying by the single digit of the multiplier reduces to a simple series of logical AND operations. Each partial product is added to a running sum as soon as each partial product is computed. Most currently available microprocessors implement this or other similar algorithms (such as Booth encoding) for various integer and floating-point sizes in hardware multipliers or in microcode.
On currently available processors, a bit-wise shift instruction is faster than a multiply instruction and can be used to multiply (shift left) and divide (shift right) by powers of two. Multiplication by a constant and division by a constant can be implemented using a sequence of shifts and adds or subtracts. For example, there are several ways to multiply by 10 using only bit-shift and addition.
((x << 2) + x) << 1 # Here x*10 => x* (x << 3) + (x << 1) # Here x*10 => x*In some cases such sequences of shifts and adds or subtracts will outperform hardware multipliers and especially dividers. A division by a number of the form or often can be converted to such a short sequence.
These types of sequences have to always be used for computers that do not have a "multiply" instruction, and can also be used by extension to floating point numbers if one replaces the shifts with computation of 2*x as x+x, as these are logically equivalent.
Read more about this topic: Multiplication Algorithm
Famous quotes containing the word shift:
“The shift from the perception of the child as innocent to the perception of the child as competent has greatly increased the demands on contemporary children for maturity, for participating in competitive sports, for early academic achievement, and for protecting themselves against adults who might do them harm. While children might be able to cope with any one of those demands taken singly, taken together they often exceed childrens adaptive capacity.”
—David Elkind (20th century)