Multidimensional Scaling - Types

Types

MDS algorithms fall into a taxonomy, depending on the meaning of the input matrix:

Classical multidimensional scaling
Also known as Principal Coordinates Analysis, Torgerson Scaling or Torgerson–Gower scaling. Takes an input matrix giving dissimilarities between pairs of items and outputs a coordinate matrix whose configuration minimizes a loss function called strain.
Metric multidimensional scaling
A superset of classical MDS that generalizes the optimization procedure to a variety of loss functions and input matrices of known distances with weights and so on. A useful loss function in this context is called stress, which is often minimized using a procedure called stress majorization.
Non-metric multidimensional scaling
In contrast to metric MDS, non-metric MDS finds both a non-parametric monotonic relationship between the dissimilarities in the item-item matrix and the Euclidean distances between items, and the location of each item in the low-dimensional space. The relationship is typically found using isotonic regression.
  • Louis Guttman's smallest space analysis (SSA) is an example of a non-metric MDS procedure.
Generalized multidimensional scaling
An extension of metric multidimensional scaling, in which the target space is an arbitrary smooth non-Euclidean space. In case when the dissimilarities are distances on a surface and the target space is another surface, GMDS allows finding the minimum-distortion embedding of one surface into another.

Read more about this topic:  Multidimensional Scaling

Famous quotes containing the word types:

    He types his laboured column—weary drudge!
    Senile fudge and solemn:
    Spare, editor, to condemn
    These dry leaves of his autumn.
    Robertson Davies (b. 1913)

    The bourgeoisie loves so-called “positive” types and novels with happy endings since they lull one into thinking that it is fine to simultaneously acquire capital and maintain one’s innocence, to be a beast and still be happy.
    Anton Pavlovich Chekhov (1860–1904)

    The wider the range of possibilities we offer children, the more intense will be their motivations and the richer their experiences. We must widen the range of topics and goals, the types of situations we offer and their degree of structure, the kinds and combinations of resources and materials, and the possible interactions with things, peers, and adults.
    Loris Malaguzzi (1920–1994)