Method of The Moving Frame
Cartan (1937) formulated the general definition of a moving frame and the method of the moving frame, as elaborated by Weyl (1938). The elements of the theory are
- A Lie group G.
- A Klein space X whose group of geometric automorphisms is G.
- A smooth manifold Σ which serves as a space of (generalized) coordinates for X.
- A collection of frames ƒ each of which determines a coordinate function from X to Σ (the precise nature of the frame is left vague in the general axiomatization).
The following axioms are then assumed to hold between these elements:
- There is a free and transitive group action of G on the collection of frames: it is a principal homogeneous space for G. In particular, for any pair of frames ƒ and ƒ′, there is a unique transition of frame (ƒ→ƒ′) in G determined by the requirement (ƒ→ƒ′)ƒ = ƒ′.
- Given a frame ƒ and a point A ∈ X, there is associated a point x = (A,ƒ) belonging to Σ. This mapping determined by the frame ƒ is a bijection from the points of X to those of Σ. This bijection is compatible with the law of composition of frames in the sense that the coordinate x′ of the point A in a different frame ƒ′ arises from (A,ƒ) by application of the transformation (ƒ→ƒ′). That is,
Of interest to the method are parameterized submanifolds of X. The considerations are largely local, so the parameter domain is taken to be an open subset of Rλ. Slightly different techniques apply depending on whether one is interested in the submanifold along with its parameterization, or the submanifold up to reparameterization.
Read more about this topic: Moving Frame
Famous quotes containing the words method of, method, moving and/or frame:
“Argument is conclusive ... but ... it does not remove doubt, so that the mind may rest in the sure knowledge of the truth, unless it finds it by the method of experiment.... For if any man who never saw fire proved by satisfactory arguments that fire burns ... his hearers mind would never be satisfied, nor would he avoid the fire until he put his hand in it ... that he might learn by experiment what argument taught.”
—Roger Bacon (c. 12141294)
“Too poor for a bribe, and too proud to importune,
He had not the method of making a fortune.”
—Thomas Gray (17161771)
“There is no going back,
For standing still means death, and life is moving on,
Moving on towards death. But sometimes standing still is also life.”
—John Ashbery (b. 1927)
“I can imagine no more comfortable frame of mind for the conduct of life than a humorous resignation.”
—W. Somerset Maugham (18741966)