Monster Group

In the mathematical field of group theory, the Monster group M or F1 (also known as the Fischer-Griess Monster, or the Friendly Giant) is a group of finite order:

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
8 · 1053.
Group theory
Basic notions
  • Subgroup
  • Normal subgroup
  • Quotient group
  • Group homomorphism
  • (Semi-)direct product
  • group homomorphisms
  • kernel
  • image
  • direct sum
  • wreath product
  • simple
  • finite
  • infinite
  • continuous
  • multiplicative
  • additive
  • cyclic
  • abelian
  • dihedral
  • nilpotent
  • solvable
  • List of group theory topics
  • Glossary of group theory
Finite groups
  • Classification of finite simple groups
  • Cyclic group
    • Zn
  • Symmetric group
    • Sn
  • Dihedral group
    • Dn
  • Alternating group
    • An
  • Mathieu groups
    • M11
    • M12
    • M22
    • M23
    • M24
  • Conway groups
    • Co1
    • Co2
    • Co3
  • Janko groups
    • J1
    • J2
    • J3
    • J4
  • Fischer groups
    • F22
    • F23
    • F24
  • Baby Monster group
    • B
  • Monster group
    • M
Discrete groups and lattices
  • Integers
    • Z
  • Lattice
  • Modular groups
    • PSL(2,Z)
    • SL(2,Z)
Topological and Lie groups
  • Solenoid
  • Circle
  • General linear GL(n)
  • Special linear SL(n)
  • Orthogonal O(n)
  • Special orthogonal SO(n)
  • Unitary U(n)
  • Special unitary SU(n)
  • Symplectic Sp(n)
  • G2
  • F4
  • E6
  • E7
  • E8
  • Lorentz
  • Poincaré
  • Conformal
  • Diffeomorphism
  • Loop
  • Infinite dimensional Lie group
    • O(∞)
    • SU(∞)
    • Sp(∞)
Algebraic groups
  • Elliptic curve
  • Linear algebraic group
  • Abelian variety

It is a simple group, meaning it does not have any non-trivial normal subgroups (that is, the only non-trivial normal subgroups is M itself).

The finite simple groups have been completely classified (see the Classification of finite simple groups). The list of finite simple groups consists of 18 countably infinite families, plus 26 sporadic groups that do not follow such a systematic pattern. The Monster group is the largest of these sporadic groups and contains all but six of the other sporadic groups as subquotients. Robert Griess has called these six exceptions pariahs, and refers to the others as the happy family.

Read more about Monster Group:  Existence and Uniqueness, Representations, Moonshine, McKay's E8 Observation, Subgroup Structure

Famous quotes containing the words monster and/or group:

    The monster of advertisement ... is a sort of octopus with innumerable tentacles. It throws out to right and left, in front and behind, its clammy arms, and gathers in, through its thousand little suckers, all the gossip and slander and praise afloat, to spit out again at the public.
    Sarah Bernhardt (1844–1923)

    Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patrick’s Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldn’t some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?
    Anna Quindlen (b. 1953)