Related Notions
- An elimination order guarantees that a monomial involving any of a set of indeterminates will always be greater than a monomial not involving any of them.
- A product order is the easier example of an elimination order. It consists in combining monomial orders on disjoint sets of indeterminates into a monomial order on their union. It simply compares the exponents of the indeterminates in the first set using the first monomial order, then breaks ties using the other monomial ordering on the indeterminates of the second set. This method obviously generalizes to any disjoint union of sets of intertermines; the lexicographic order can be so obtained from the singleton sets {x1}, {x2}, {x3}, ... (with the unique monomial ordering for each singleton).
When using monomial orderings to define Gröbner bases, different orders can lead to different results. For example, graded reverse lexicographic order has a reputation for producing relatively small Gröbner bases, while elimination orders can be used with the same algorithms to solve systems of polynomial equations by eliminating variables.
Read more about this topic: Monomial Order
Famous quotes containing the words related and/or notions:
“Generally there is no consistent evidence of significant differences in school achievement between children of working and nonworking mothers, but differences that do appear are often related to maternal satisfaction with her chosen role, and the quality of substitute care.”
—Ruth E. Zambrana, U.S. researcher, M. Hurst, and R.L. Hite. The Working Mother in Contemporary Perspectives: A Review of Literature, Pediatrics (December 1979)
“Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.”
—Jonathan Swift (16671745)