Monoid Ring - Definition

Definition

Let R be a ring and G be a monoid. Consider all the functions φ : GR such that the set {g: φ(g) ≠ 0} is finite. Let all such functions be element-wise addable. We can define multiplication by (φ * ψ)(g) = Σkl=gφ(k)ψ(l). The set of all such functions φ, together with these two operations, forms a ring, the monoid ring of G over R denoted R. If G is a group, then R denotes the group ring of G over R.

Less rigorously but more simply, an element of R is a polynomial in G over R, hence the notation. We multiply elements as polynomials, taking the product in G of the "indeterminates" and gathering terms:

where risj is the R-product and gihj is the G-product.

The ring R can be embedded in the ring R via the ring homomorphism T : RR defined by

T(r)(1G) = r, T(r)(g) = 0 for g ≠ 1G.

where 1G is the identity element of G.

There also exists a canonical homomorphism going the other way, called the augmentation. It is the map ηR:RR, defined by

The kernel of this homomorphism, the augmentation ideal, is denoted by JR(G). It is a free R-module generated by the elements 1 - g, for g in G.

Read more about this topic:  Monoid Ring

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)