Molecular Scale Electronics - Theoretical Basis

Theoretical Basis

Molecular electronics operates in the quantum realm of distances less than 100 nanometers. The miniaturization down to single molecules brings the scale down to a regime where quantum effects are important. As opposed to the case in conventional electronic components, where electrons can be filled in or drawn out more or less like a continuous flow of charge, the transfer of a single electron alters the system significantly. This means that when an electron has been transferred from the source electrode to the molecule, the molecule gets charged up and makes it much harder for the next one to transfer (see also Coulomb blockade). The significant amount of energy due to charging must be taken into account when making calculations about the electronic properties of the setup and is highly sensitive to distances to conducting surfaces nearby.

The theory of single molecule devices is particularly interesting since the system under consideration is an open quantum system in nonequilibrium (driven by voltage). In the low bias voltage regime, the nonequilibrium nature of the molecular junction can be ignored, and the current-voltage characteristics of the device can be calculated using the equilibrium electronic structure of the system. However, in stronger bias regimes a more sophisticated treatment is required, as there is no longer a variational principle. In the elastic tunneling case (where the passing electron does not exchange energy with the system), the formalism of Rolf Landauer can be used to calculate the transmission through the system as a function of bias voltage, and hence the current. In inelastic tunneling, an elegant formalism based on the non-equilibrium Green's functions of Leo Kadanoff and Gordon Baym, and independently by Leonid Keldysh was put forth by Ned Wingreen and Yigal Meir. This Meir-Wingreen formulation has been used to great success in the molecular electronics community to examine the more difficult and interesting cases where the transient electron exchanges energy with the molecular system (for example through electron-phonon coupling or electronic excitations).


Further, connecting single molecules reliably to a larger scale circuit has proven a great challenge, and constitutes a significant hindrance to commercialization.

Read more about this topic:  Molecular Scale Electronics

Famous quotes containing the words theoretical and/or basis:

    Post-structuralism is among other things a kind of theoretical hangover from the failed uprising of ‘68Ma way of keeping the revolution warm at the level of language, blending the euphoric libertarianism of that moment with the stoical melancholia of its aftermath.
    Terry Eagleton (b. 1943)

    Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others’ reasons for action, or the basis of others’ emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.
    Terri Apter (20th century)