Tracer, Self- and Chemical Diffusion
Fundamentally, two types of diffusion are distinguished:
- Tracer diffusion and Self-diffusion, which is a spontaneous mixing of molecules taking place in the absence of concentration (or chemical potential) gradient. This type of diffusion can be followed using isotopic tracers, hence the name. The tracer diffusion is usually assumed to be identical to self-diffusion (assuming no significant isotopic effect). This diffusion can take place under equilibrium. An excellent method for the measurement of self-diffusion coefficients is pulsed field gradient (PFG) NMR, where no isotopic tracers are needed. In a so-called NMR spin echo experiment this technique uses the nuclear spin precession phase, allowing to distinguish chemically and physically completely identical species e.g. in the liquid phase, as for example water molecules within liquid water. The self-diffusion coefficient of water has been experimentally determined with high accuracy and thus serves often as a reference value for measurements on other liquids. The self-diffusion coefficient of neat water is: 2.299·10−9 m²·s−1 at 25 °C and 1.261·10−9 m²·s−1 at 4 °C.
- Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation. This diffusion is always a non-equilibrium process, increases the system entropy, and brings the system closer to equilibrium.
The diffusion coefficients for these two types of diffusion are generally different because the diffusion coefficient for chemical diffusion is binary and it includes the effects due to the correlation of the movement of the different diffusing species.
Read more about this topic: Molecular Diffusion
Famous quotes containing the word chemical:
“If Thought is capable of being classed with Electricity, or Will with chemical affinity, as a mode of motion, it seems necessary to fall at once under the second law of thermodynamics as one of the energies which most easily degrades itself, and, if not carefully guarded, returns bodily to the cheaper form called Heat. Of all possible theories, this is likely to prove the most fatal to Professors of History.”
—Henry Brooks Adams (18381918)