Relationship To Other Biological Sciences
Researchers in molecular biology use specific techniques native to molecular biology but increasingly combine these with techniques and ideas from genetics and biochemistry. There is not a defined line between these disciplines. The figure above is a schematic that depicts one possible view of the relationship between the fields:
- Biochemistry is the study of the chemical substances and vital processes occurring in living organisms. Biochemists focus heavily on the role, function, and structure of biomolecules. The study of the chemistry behind biological processes and the synthesis of biologically active molecules are examples of biochemistry.
- Genetics is the study of the effect of genetic differences on organisms. This can often be inferred by the absence of a normal component (e.g. one gene). The study of "mutants" – organisms which lack one or more functional components with respect to the so-called "wild type" or normal phenotype. Genetic interactions (epistasis) can often confound simple interpretations of such "knock-out" studies.
- Molecular biology is the study of molecular underpinnings of the processes of replication, transcription, translation, and cell function. The central dogma of molecular biology where genetic material is transcribed into RNA and then translated into protein, despite being an oversimplified picture of molecular biology, still provides a good starting point for understanding the field. This picture, however, is undergoing revision in light of emerging novel roles for RNA.
Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology. As of the early 2000s, the study of gene structure and function, molecular genetics, has been among the most prominent sub-field of molecular biology.
Increasingly many other loops of biology focus on molecules, either directly studying their interactions in their own right such as in cell biology and developmental biology, or indirectly, where the techniques of molecular biology are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up" in biophysics.
Read more about this topic: Molecular Biology
Famous quotes containing the words relationship to, relationship, biological and/or sciences:
“Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.”
—Johann Wolfgang Von Goethe (17491832)
“When a mother quarrels with a daughter, she has a double dose of unhappinesshers from the conflict, and empathy with her daughters from the conflict with her. Throughout her life a mother retains this special need to maintain a good relationship with her daughter.”
—Terri Apter (20th century)
“I am fifty-two years of age. I am a bishop in the Anglican Church, and a few people might be constrained to say that I was reasonably responsible. In the land of my birth I cannot vote, whereas a young person of eighteen can vote. And why? Because he or she possesses that wonderful biological attributea white skin.”
—Desmond Tutu (b. 1931)
“The sciences have ever been the surest guides to virtue.”
—Frances Wright (17951852)