Modular Group - Relationship To Hyperbolic Geometry

Relationship To Hyperbolic Geometry

See also: PSL2(R)

The modular group is important because it forms a subgroup of the group of isometries of the hyperbolic plane. If we consider the upper half-plane model H of hyperbolic plane geometry, then the group of all orientation-preserving isometries of H consists of all Möbius transformations of the form

where a, b, c, and d are real numbers and adbc = 1. Put differently, the group PSL(2,R) acts on the upper half-plane H according to the following formula:

This (left-)action is faithful. Since PSL(2,Z) is a subgroup of PSL(2,R), the modular group is a subgroup of the group of orientation-preserving isometries of H.

Read more about this topic:  Modular Group

Famous quotes containing the words relationship and/or geometry:

    Only men of moral and mental force, of a patriotic regard for the relationship of the two races, can be of real service as ministers in the South. Less theology and more of human brotherhood, less declamation and more common sense and love for truth, must be the qualifications of the new ministry that shall yet save the race from the evils of false teaching.
    Fannie Barrier Williams (1855–1944)

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)