Congruence Relation
Modular arithmetic can be handled mathematically by introducing a congruence relation on the integers that is compatible with the operations of the ring of integers: addition, subtraction, and multiplication. For a positive integer n, two integers a and b are said to be congruent modulo n, written:
if their difference a − b is an integer multiple of n. The number n is called the modulus of the congruence.
For example,
because 38 − 14 = 24, which is a multiple of 12.
The same rule holds for negative values:
When and are either both positive or both negative, then can also be thought of as asserting that both and have the same remainder. For instance:
because both and have the same remainder, . It is also the case that is an integer multiple of, which agrees with the prior definition of the congruence relation.
A remark on the notation: Because it is common to consider several congruence relations for different moduli at the same time, the modulus is incorporated in the notation. In spite of the ternary notation, the congruence relation for a given modulus is binary. This would have been clearer if the notation a ≡n b had been used, instead of the common traditional notation.
The properties that make this relation a congruence relation (respecting addition, subtraction, and multiplication) are the following.
If
and
then:
It should be noted that the above two properties would still hold if the theory were expanded to include all real numbers, that is if were not necessarily all integers. The next property, however, would fail if these variables were not all integers:
Read more about this topic: Modular Arithmetic
Famous quotes containing the words congruence and/or relation:
“As for butterflies, I can hardly conceive
of ones attending upon you; but to question
the congruence of the complement is vain, if it exists.”
—Marianne Moore (18871972)
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—Honoré De Balzac (17991850)