Model Theory and Set Theory
Set theory (which is expressed in a countable language), if it is consistent, has a countable model; this is known as Skolem's paradox, since there are sentences in set theory which postulate the existence of uncountable sets and yet these sentences are true in our countable model. Particularly the proof of the independence of the continuum hypothesis requires considering sets in models which appear to be uncountable when viewed from within the model, but are countable to someone outside the model.
The model-theoretic viewpoint has been useful in set theory; for example in Kurt Gödel's work on the constructible universe, which, along with the method of forcing developed by Paul Cohen can be shown to prove the (again philosophically interesting) independence of the axiom of choice and the continuum hypothesis from the other axioms of set theory.
In the other direction, model theory itself can be formalized within ZFC set theory. The development of the fundamentals of model theory (such as the compactness theorem) rely on the axiom of choice, or more exactly the Boolean prime ideal theorem. Other results in model theory depend on set-theoretic axioms beyond the standard ZFC framework. For example, if the Continuum Hypothesis holds then every countable model has an ultrapower which is saturated (in its own cardinality). Similarly, if the Generalized Continuum Hypothesis holds then every model has a saturated elementary extension. Neither of these results are provable in ZFC alone. Finally, some questions arising from model theory (such as compactness for infinitary logics) have been shown to be equivalent to large cardinal axioms.
Read more about this topic: Model Theory
Famous quotes containing the words model, theory and/or set:
“The best way to teach a child restraint and generosity is to be a model of those qualities yourself. If your child sees that you want a particular item but refrain from buying it, either because it isnt practical or because you cant afford it, he will begin to understand restraint. Likewise, if you donate books or clothing to charity, take him with you to distribute the items to teach him about generosity.”
—Lawrence Balter (20th century)
“... liberal intellectuals ... tend to have a classical theory of politics, in which the state has a monopoly of power; hoping that those in positions of authority may prove to be enlightened men, wielding power justly, they are natural, if cautious, allies of the establishment.”
—Susan Sontag (b. 1933)
“We set up a certain aim, and put ourselves of our own will into the power of a certain current. Once having done that, we find ourselves committed to usages and customs which we had not before fully known, but from which we cannot depart without giving up the end which we have chosen. But we have no right, therefore, to claim that we are under the yoke of necessity. We might as well say that the man whom we see struggling vainly in the current of Niagara could not have helped jumping in.”
—Anna C. Brackett (18361911)