Nonlinear MPC
Nonlinear Model Predictive Control, or NMPC, is a variant of model predictive control (MPC) that is characterized by the use of nonlinear system models in the prediction. As in linear MPC, NMPC requires the iterative solution of optimal control problems on a finite prediction horizon. While these problems are convex in linear MPC, in nonlinear MPC they are not convex anymore. This poses challenges for both, NMPC stability theory and numerical solution.
The numerical solution of the NMPC optimal control problems is typically based on direct optimal control methods using Newton-type optimization schemes, in one of the variants: direct single shooting, direct multiple shooting methods, or direct collocation. NMPC algorithms typically exploit the fact that consecutive optimal control problems are similar to each other.
This allows to initialize the Newton-type solution procedure efficiently by a suitably shifted guess from the previously computed optimal solution, saving considerable amounts of computation time. The similarity of subsequent problems is even further exploited by path following algorithms (or "real-time iterations") that never attempt to iterate any optimization problem to convergence, but instead only take one iteration towards the solution of the most current NMPC problem, before proceeding to the next one, which is suitably initialized.
While NMPC applications have in the past been mostly used in the process and chemical industries with comparatively slow sampling rates, NMPC is more and more being applied to applications with high sampling rates, e.g., in the automotive industry, or even when the states are distributed in space (Distributed parameter systems)
Read more about this topic: Model Predictive Control