Changing The Tensor Type
Consider the following octet of related tensors:
- .
The first one is covariant, the last one contravariant, and the remaining ones mixed. Notationally, these tensors differ from each other by the covariance/contravariance of their indices. A given contravariant index of a tensor can be lowered using the metric tensor gμν, and a given covariant index can be raised using the inverse metric tensor gμν. Thus, gμν could be called the index lowering operator and gμν the index raising operator.
Generally, the covariant metric tensor, contracted with a tensor of type (M, N), yields a tensor of type (M − 1, N + 1), whereas its contravariant inverse, contracted with a tensor of type (M, N), yields a tensor of type (M + 1, N − 1).
Read more about this topic: Mixed Tensor
Famous quotes containing the words changing the, changing and/or type:
“A culture may be conceived as a network of beliefs and purposes in which any string in the net pulls and is pulled by the others, thus perpetually changing the configuration of the whole. If the cultural element called morals takes on a new shape, we must ask what other strings have pulled it out of line. It cannot be one solitary string, nor even the strings nearby, for the network is three-dimensional at least.”
—Jacques Barzun (b. 1907)
“But one man loved the pilgrim soul in you,
And loved the sorrows of your changing face.”
—William Butler Yeats (18651939)
“The real American type can never be a ballet dancer. The legs are too long, the body too supple and the spirit too free for this school of affected grace and toe walking.”
—Isadora Duncan (18781927)