Microwave Oven - Principles

Principles

For more details on this topic, see dielectric heating.

A microwave oven works by passing non-ionizing microwave radiation, usually at a frequency of 2.45 gigahertz (GHz)—a wavelength of 122 millimetres (4.80 in)—through the food. Microwave radiation is between common radio and infrared frequencies. Water, fat, and other substances in the food absorb energy from the microwaves in a process called dielectric heating. Many molecules (such as those of water) are electric dipoles, meaning that they have a partial positive charge at one end and a partial negative charge at the other, and therefore rotate as they try to align themselves with the alternating electric field of the microwaves. Rotating molecules hit other molecules and put them into motion, thus dispersing energy. This energy, when dispersed as molecular vibration in solids and liquids (i.e., as both potential energy and kinetic energy of atoms), is heat.

Microwave heating is more efficient on liquid water than on frozen water, where the movement of molecules is more restricted. It is also less efficient on fats and sugars (which have a smaller molecular dipole moment) than on liquid water. Microwave heating is sometimes explained as a resonance of water molecules, but this is incorrect: such resonance only occurs in water vapor at much higher frequencies, at about 20 GHz. Moreover, large industrial/commercial microwave ovens operating at the common large industrial-oven microwave heating frequency of 915 MHz—wavelength 328 millimetres (12.9 in)—also heat water and food perfectly well.

Sugars and triglycerides (fats and oils) absorb microwaves due to the dipole moments of their hydroxyl groups or ester groups. However, due to the lower specific heat capacity of fats and oils and their higher vaporization temperature, they often attain much higher temperatures inside microwave ovens. This can induce temperatures in oil or very fatty foods like bacon far above the boiling point of water, and high enough to induce some browning reactions, much in the matter of conventional broiling (UK: grilling) or deep fat frying. Foods high in water content and with little oil rarely exceed temperatures greater than boiling (vaporizing) water.

Microwave heating can cause localized thermal runaways in some materials with low thermal conductivity which also have dielectric constants that increase with temperature. An example is glass, which can exhibit thermal runaway in a microwave to the point of melting. Additionally, microwaves can melt certain types of rocks, producing small quantities of synthetic lava. Some ceramics can also be melted, and may even become clear upon cooling. Thermal runaway is more typical of electrically conductive liquids such as salty water.

A common misconception is that microwave ovens cook food "from the inside out", meaning from the center of the entire mass of food outwards. This idea arises from heating behavior seen if an absorbent layer of water lies beneath a less absorbent dryer layer at the surface of a food; in this case, the deposition of heat inside a food can exceed that on its surface. In most cases, however, with uniformly structured or reasonably homogenous food item, microwaves are absorbed in the outer layers of the item in a manner somewhat similar to heat from other methods. Depending on water content, the depth of initial heat deposition may be several centimetres or more with microwave ovens, in contrast to broiling/grilling (infrared) or convection heating—methods which deposit heat thinly at the food surface. Penetration depth of microwaves is dependent on food composition and the frequency, with lower microwave frequencies (longer wavelengths) penetrating further.

The previous paragraph notwithstanding, the interior of small food items can reach a higher temperature than the surface because the interior is thermally insulated from the air. It is possible to burn the inside of a cookie while the exterior remains unbrowned.

Read more about this topic:  Microwave Oven

Famous quotes containing the word principles:

    ...at this stage in the advancement of women the best policy for them is not to talk much about the abstract principles of women’s rights but to do good work in any job they get, better work if possible than their male colleagues.
    Virginia Crocheron Gildersleeve (1877–1965)

    Custom is our nature.... What are our natural principles but principles of custom?
    Blaise Pascal (1623–1662)

    Now there cannot be first principles for men, unless the Divinity has revealed them; all the rest—beginning, middle, and end—is nothing but dreams and smoke.
    Michel de Montaigne (1533–1592)