Design
A microwave oven consists of:
- a high voltage power source, commonly a simple transformer or an electronic power converter, which passes energy to the magnetron
- a high voltage capacitor connected to the magnetron, transformer and via a diode to the case.
- a cavity magnetron, which converts high-voltage electric energy to microwave radiation
- a magnetron control circuit (usually with a microcontroller)
- a waveguide (to control the direction of the microwaves)
- a cooking chamber
Modern microwave ovens use either an analog dial-type timer or a digital control panel for operation. Control panels feature an LED, liquid crystal or vacuum fluorescent display, numeric buttons for entering the cook time, a power level selection feature and other possible functions such as a defrost setting and pre-programmed settings for different food types, such as meat, fish, poultry, vegetables, frozen vegetables, frozen entrées, and popcorn. In most ovens, the magnetron is driven by a linear transformer which can only feasibly be switched completely on or off. As such, the choice of power level does not affect the intensity of the microwave radiation; instead, the magnetron is turned on and off in duty cycles of several seconds at a time. Newer models have inverter power supplies which use pulse width modulation to provide effectively continuous heating at reduced power so that foods are heated more evenly at a given power level and can be heated more quickly without being damaged by uneven heating.
The microwave frequencies used in microwave ovens are chosen based on regulatory and cost constraints. The first is that they should be in one of the industrial, scientific, and medical (ISM) frequency bands set aside for non-communication purposes. Three additional ISM bands exist in the microwave frequencies, but are not used for microwave cooking. Two of them are centered on 5.8 GHz and 24.125 GHz, but are not used for microwave cooking because of the very high cost of power generation at these frequencies. The third, centered on 433.92 MHz, is a narrow band that would require expensive equipment to generate sufficient power without creating interference outside the band, and is only available in some countries. For household purposes, 2.45 GHz has the advantage over 915 MHz in that 915 MHz is only an ISM band in the ITU Region 2 while 2.45 GHz is available worldwide.
The cooking chamber is similar to a Faraday cage (but there is no continuous metal-to-metal contact around the rim of the door), and prevents the waves from coming out of the oven. The oven door usually has a window for easy viewing, but the window has a layer of conductive mesh some distance from the outer panel to maintain the shielding. Because the size of the perforations in the mesh is much less than the microwaves' wavelength, most of the microwave radiation cannot pass through the door, while visible light (with a much shorter wavelength) can.
Read more about this topic: Microwave Oven
Famous quotes containing the word design:
“You can make as good a design out of an American turkey as a Japanese out of his native stork.”
—For the State of Illinois, U.S. public relief program (1935-1943)
“Nowadays the host does not admit you to his hearth, but has got the mason to build one for yourself somewhere in his alley, and hospitality is the art of keeping you at the greatest distance. There is as much secrecy about the cooking as if he had a design to poison you.”
—Henry David Thoreau (18171862)
“What but design of darkness to appall?
If design govern in a thing so small.”
—Robert Frost (18741963)