Microelectromechanical Systems - Applications

Applications

In one viewpoint MEMS application is categorized by type of use.

  • Sensor
  • Actuator
  • Structure

In another view point MEMS applications are categorized by the field of application (commercial applications include):

  • Inkjet printers, which use piezoelectrics or thermal bubble ejection to deposit ink on paper.
  • Accelerometers in modern cars for a large number of purposes including airbag deployment in collisions.
  • Accelerometers in consumer electronics devices such as game controllers (Nintendo Wii), personal media players / cell phones (Apple iPhone, various Nokia mobile phone models, various HTC PDA models) and a number of Digital Cameras (various Canon Digital IXUS models). Also used in PCs to park the hard disk head when free-fall is detected, to prevent damage and data loss.
  • MEMS gyroscopes used in modern cars and other applications to detect yaw; e.g., to deploy a roll over bar or trigger dynamic stability control
  • MEMS microphones in portable devices, e.g., mobile phones, head sets and laptops.
  • Silicon pressure sensors e.g., car tire pressure sensors, and disposable blood pressure sensors
  • Displays e.g., the DMD chip in a projector based on DLP technology, which has a surface with several hundred thousand micromirrors or single micro-scanning-mirrors also called microscanners
  • Optical switching technology, which is used for switching technology and alignment for data communications
  • Bio-MEMS applications in medical and health related technologies from Lab-On-Chip to MicroTotalAnalysis (biosensor, chemosensor)
  • Interferometric modulator display (IMOD) applications in consumer electronics (primarily displays for mobile devices), used to create interferometric modulation − reflective display technology as found in mirasol displays
  • Fluid acceleration such as for micro-cooling

Companies with strong MEMS programs come in many sizes. The larger firms specialize in manufacturing high volume inexpensive components or packaged solutions for end markets such as automobiles, biomedical, and electronics. The successful small firms provide value in innovative solutions and absorb the expense of custom fabrication with high sales margins. In addition, both large and small companies work in R&D to explore MEMS technology.

Read more about this topic:  Microelectromechanical Systems