Metrization Theorems
The first really useful metrization theorem was Urysohn's metrization theorem. This states that every Hausdorff second-countable regular space is metrizable. So, for example, every second-countable manifold is metrizable. (Historical note: The form of the theorem shown here was in fact proved by Tychonoff in 1926. What Urysohn had shown, in a paper published posthumously in 1925, was that every second-countable normal Hausdorff space is metrizable). The converse does not hold: there exist metric spaces that are not second countable, for example, an uncountable set endowed with the discrete metric. The Nagata–Smirnov metrization theorem, described below, provides a more specific theorem where the converse does hold.
Several other metrization theorems follow as simple corollaries to Urysohn's Theorem. For example, a compact Hausdorff space is metrizable if and only if it is second-countable.
Urysohn's Theorem can be restated as: A topological space is separable and metrizable if and only if it is regular, Hausdorff and second-countable. The Nagata–Smirnov metrization theorem extends this to the non-separable case. It states that a topological space is metrizable if and only if it is regular, Hausdorff and has a σ-locally finite base. A σ-locally finite base is a base which is a union of countably many locally finite collections of open sets. For a closely related theorem see the Bing metrization theorem.
Separable metrizable spaces can also be characterized as those spaces which are homeomorphic to a subspace of the Hilbert cube, i.e. the countably infinite product of the unit interval (with its natural subspace topology from the reals) with itself, endowed with the product topology.
A space is said to be locally metrizable if every point has a metrizable neighbourhood. Smirnov proved that a locally metrizable space is metrizable if and only if it is Hausdorff and paracompact. In particular, a manifold is metrizable if and only if it is paracompact.
Read more about this topic: Metrization Theorem