Methane Reformer - Autothermal Reforming

Autothermal Reforming

Autothermal reforming (ATR) uses oxygen and carbon dioxide or steam in a reaction with methane to form syngas. The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic due to the oxidation. When the ATR uses carbon dioxide the H2:CO ratio produced is 1:1; when the ATR uses steam the H2:CO ratio produced is 2.5:1

The reactions can be described in the following equations, using CO2:

2CH4 + O2 + CO2 → 3H2 + 3CO + H2O

And using steam:

4CH4 + O2 + 2H2O → 10H2 + 4CO

The outlet temperature of the syngas is between 950-1100 C and outlet pressure can be as high as 100 bar.

The main difference between SMR and ATR is that SMR uses no oxygen. The advantage of ATR is that the H2:CO can be varied, this is particularly useful for producing certain second generation biofuels, such as DME which requires a 1:1 H2:CO ratio.

Read more about this topic:  Methane Reformer

Famous quotes containing the word reforming:

    Nothing so needs reforming as other people’s habits.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)