Metallic Bond - Optical Properties

Optical Properties

The presence of an ocean of mobile charge carriers has profound effects on the optical properties of metals. They can only be understood by considering the electrons as a collective rather than considering the states of individual electrons involved in more conventional covalent bonds.

Light consists of a combination of an electrical and a magnetic field. The electrical field is usually able to excite an elastic response from the electrons involved in the metallic bonding. The result is that photons are not able to penetrate very far into the metal and are typically reflected. They bounce off, although some may also be absorbed. This holds equally for all photons of the visible spectrum, which is why metals are often silvery white or grayish with the characteristic specular reflection of metallic luster. The balance between reflection and absorption determines how white or how gray they are, although surface tarnish can obscure such observations. Silver, a very good metal with high conductivity is one of the whitest.

Notable exceptions are reddish copper and yellowish gold. The reason for their color is that there is an upper limit to the frequency of the light that metallic electrons can readily respond to, the plasmon frequency. At the plasmon frequency, the frequency-dependent dielectric function of the free electron gas goes from negative (reflecting) to positive (transmitting); higher frequency photons are not reflected at the surface, and do not contribute to the color of the metal. There are some materials like indium tin oxide (ITO) that are metallic conductors (actually degenerate semiconductors) for which this threshold is in the infrared, which is why they are transparent in the visible, but good mirrors in the IR.

For silver the limiting frequency is in the far UV, but for copper and gold it is closer to the visible. This explains the colors of these two metals. At the surface of a metal resonance effects known as surface plasmons can result. They are collective oscillations of the conduction electrons like a ripple in the electronic ocean. However, even if photons have enough energy they usually do not have enough momentum to set the ripple in motion. Therefore, plasmons are hard to excite on a bulk metal. This is why gold and copper still look like lustrous metals albeit with a dash of color. However, in colloidal gold the metallic bonding is confined to a tiny metallic particle, preventing the oscillation wave of the plasmon from 'running away'. The momentum selection rule is therefore broken, and the plasmon resonance causes an extremely intense absorption in the green with a resulting beautiful purple-red color. Such colors are orders of magnitude more intense than ordinary absorptions seen in dyes and the like that involve individual electrons and their energy states.

Read more about this topic:  Metallic Bond

Famous quotes containing the words optical and/or properties:

    The convent, which belongs to the West as it does to the East, to antiquity as it does to the present time, to Buddhism and Muhammadanism as it does to Christianity, is one of the optical devices whereby man gains a glimpse of infinity.
    Victor Hugo (1802–1885)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)