Applications
- Carbide drills are often made from a tough cobalt matrix with hard tungsten carbide particles inside.
- Some tank armors may be made from metal matrix composites, probably steel reinforced with boron nitride. Boron nitride is a good reinforcement for steel because it is very stiff and it does not dissolve in molten steel.
- Some automotive disc brakes use MMCs. Early Lotus Elise models used aluminum MMC rotors, but they have less than optimal heat properties and Lotus has since switched back to cast-iron. Modern high-performance sport cars, such as those built by Porsche, use rotors made of carbon fiber within a silicon carbide matrix because of its high specific heat and thermal conductivity. 3M sells a preformed aluminum matrix insert for strengthening cast aluminum disc brake calipers, allowing them to weigh as much as 50% less while increasing stiffness. 3M has also used alumina preforms for AMC pushrods.
- Ford offers a Metal Matrix Composite (MMC) driveshaft upgrade. The MMC driveshaft is made of an aluminum matrix reinforced with boron carbide, allowing the critical speed of the driveshaft to be raised by reducing inertia. The MMC driveshaft has become a common modification for racers, allowing the top speed to be increased far beyond the safe operating speeds of a standard aluminum driveshaft.
- Honda has used aluminum metal matrix composite cylinder liners in some of their engines, including the B21A1, H22A and H23A, F20C and F22C, and the C32B used in the NSX.
- Toyota has since used metal matrix composites in the Yamaha-designed 2ZZ-GE engine which is used in the later Lotus Lotus Elise S2 versions as well as Toyota car models, including the eponymous Toyota Matrix. Porsche also uses MMCs to reinforce the engine's cylinder sleeves in the Boxster and 911.
- The F-16 Fighting Falcon uses monofilament silicon carbide fibers in a titanium matrix for a structural component of the jet's landing gear.
- Specialized Bicycles has used aluminum MMC compounds for its top of the range bicycle frames for several years. Griffen Bicycles also makes boron carbide-aluminum MMC bike frames, and Univega briefly did so as well.
- Some equipment in particle accelerators such as Radio Frequency Quadrupoles (RFQs) or electron targets use copper MMC compounds such as Glidcop to retain the material properties of copper at high temperatures and radiation levels.
- Copper-silver alloy matrix containing 55 vol.% diamond particles, known as Dymalloy, is used as a substrate for high-power and high density multi-chip modules in electronics for its very high thermal conductivity.
MMCs are nearly always more expensive than the more conventional materials they are replacing. As a result, they are found where improved properties and performance can justify the added cost. Today these applications are found most often in aircraft components, space systems and high-end or "boutique" sports equipment. The scope of applications will certainly increase as manufacturing costs are reduced.
In comparison with conventional polymer matrix composites, MMCs are resistant to fire, can operate in wider range of temperatures, do not absorb moisture, have better electrical and thermal conductivity, are resistant to radiation damage, and do not display outgassing. On the other hand, MMCs tend to be more expensive, the fiber-reinforced materials may be difficult to fabricate, and the available experience in use is limited.
Read more about this topic: Metal Matrix Composite