The memory controller is a digital circuit which manages the flow of data going to and from the main memory. It can be a separate chip or integrated into another chip, such as on the die of a microprocessor. This is also called a Memory Chip Controller (MCC).
Computers using Intel microprocessors have traditionally had a memory controller implemented on their motherboard's northbridge, but many modern microprocessors, such as DEC/Compaq's Alpha 21364, AMD's Athlon 64 and Opteron processors, IBM's POWER5, Sun Microsystems's UltraSPARC T1, and more recently Intel's Core i7 have an integrated memory controller (IMC) on the microprocessor in order to reduce memory latency. While this has the potential to increase the system's performance, it locks the microprocessor to a specific type (or types) of memory, forcing a redesign in order to support newer memory technologies. When DDR2 SDRAM was introduced, AMD released new Athlon 64 CPUs. These new models, with a DDR2 controller, use a different physical socket (known as Socket AM2), so that they will only fit in motherboards designed for the new type of RAM. When the memory controller is not on-die, the same CPU may be installed on a new motherboard, with an updated northbridge.
The integration of the memory controller onto the die of the microprocessor is not a new concept. Some microprocessors in the 1990s such as the DEC Alpha 21066 and HP PA-7300LC had integrated memory controllers, but rather than for performance gains, this was implemented to reduce the cost of systems by eliminating the need for an external memory controller.
Read more about Memory Controller: Purpose, Double Data Rate Memory, Dual-channel Memory, Fully Buffered Memory
Famous quotes containing the word memory:
“What has kept the world safe from the bomb since 1945 has not been deterrence, in the sense of fear of specific weapons, so much as its been memory. The memory of what happened at Hiroshima.”
—John Hersey (b. 1914)