Mellin Transform - in Probability Theory

In Probability Theory

In probability theory Mellin transform is an essential tool in studying the distributions of products of random variables. If X is a random variable, and X+ = max{X,0} denotes its positive part, while X − = max{−X,0} is its negative part, then the Mellin transform of X is defined as

 \mathcal{M}_X(s) = \int_0^\infty x^s dF_{X^+}(x) + \gamma\int_0^\infty x^s dF_{X^-}(x),

where γ is a formal indeterminate with γ2 = 1. This transform exists for all s in some complex strip D = {s: a ≤ Re(s) ≤ b}, where a ≤ 0 ≤ b.

The Mellin transform of a random variable X uniquely determines its distribution function FX. The importance of the Mellin transform in probability theory lies in the fact that if X and Y are two independent random variables, then the Mellin transform of their products is equal to the product of the Mellin transforms of X and Y:

 \mathcal{M}_{XY}(s) = \mathcal{M}_X(s)\mathcal{M}_Y(s)

Read more about this topic:  Mellin Transform

Famous quotes containing the words probability and/or theory:

    Only in Britain could it be thought a defect to be “too clever by half.” The probability is that too many people are too stupid by three-quarters.
    John Major (b. 1943)

    In the theory of gender I began from zero. There is no masculine power or privilege I did not covet. But slowly, step by step, decade by decade, I was forced to acknowledge that even a woman of abnormal will cannot escape her hormonal identity.
    Camille Paglia (b. 1947)