Mellin Transform - in Probability Theory

In Probability Theory

In probability theory Mellin transform is an essential tool in studying the distributions of products of random variables. If X is a random variable, and X+ = max{X,0} denotes its positive part, while X − = max{−X,0} is its negative part, then the Mellin transform of X is defined as

 \mathcal{M}_X(s) = \int_0^\infty x^s dF_{X^+}(x) + \gamma\int_0^\infty x^s dF_{X^-}(x),

where γ is a formal indeterminate with γ2 = 1. This transform exists for all s in some complex strip D = {s: a ≤ Re(s) ≤ b}, where a ≤ 0 ≤ b.

The Mellin transform of a random variable X uniquely determines its distribution function FX. The importance of the Mellin transform in probability theory lies in the fact that if X and Y are two independent random variables, then the Mellin transform of their products is equal to the product of the Mellin transforms of X and Y:

 \mathcal{M}_{XY}(s) = \mathcal{M}_X(s)\mathcal{M}_Y(s)

Read more about this topic:  Mellin Transform

Famous quotes containing the words probability and/or theory:

    The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.
    Robert Musil (1880–1942)

    The theory [before the twentieth century] ... was that all the jobs in the world belonged by right to men, and that only men were by nature entitled to wages. If a woman earned money, outside domestic service, it was because some misfortune had deprived her of masculine protection.
    Rheta Childe Dorr (1866–1948)