Mechanical engineering is a discipline of engineering that applies the principles of physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the design, production, and operation of machines and tools. It is one of the oldest and broadest engineering disciplines.
The engineering field requires an understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, structural analysis, and electricity. Mechanical engineers use these core principles along with tools like computer-aided engineering and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, and others.
Mechanical engineering emerged as a field during the industrial revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world. Mechanical engineering science emerged in the 19th century as a result of developments in the field of physics. The field has continually evolved to incorporate advancements in technology, and mechanical engineers today are pursuing developments in such fields as composites, mechatronics, and nanotechnology. Mechanical engineering overlaps with aerospace engineering, building services engineering, metallurgical engineering, marine engineering, civil engineering, electrical engineering, petroleum engineering, manufacturing engineering, and chemical engineering to varying amounts.
Read more about Mechanical Engineering: Development, Education, Salaries and Workforce Statistics, Modern Tools, Subdisciplines, Frontiers of Research, Related Fields
Famous quotes containing the words mechanical and/or engineering:
“The correct rate of speed in innovating changes in long-standing social customs has not yet been determined by even the most expert of the experts. Personally I am beginning to think there is more danger in lagging than in speeding up cultural change to keep pace with mechanical change.”
—Mary Barnett Gilson (1877?)
“Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.”
—Merle Colby, U.S. public relief program (1935-1943)