Formal Statement
Topics in calculus |
---|
|
Differential calculus
|
Integral calculus
|
Vector calculus
|
Multivariable calculus
|
Let f : → R be a continuous function on the closed interval, and differentiable on the open interval (a, b), where a < b. Then there exists some c in (a, b) such that
The mean value theorem is a generalization of Rolle's theorem, which assumes f(a) = f(b), so that the right-hand side above is zero.
The mean value theorem is still valid in a slightly more general setting. One only needs to assume that f : → R is continuous on, and that for every x in (a, b) the limit
exists as a finite number or equals +∞ or −∞. If finite, that limit equals f′(x). An example where this version of the theorem applies is given by the real-valued cube root function mapping x to x1/3, whose derivative tends to infinity at the origin.
Note that the theorem, as stated, is false if a differentiable function is complex-valued instead of real-valued. For example, define f(x) = eix for all real x. Then
- f(2π) − f(0) = 0 = 0(2π − 0)
while |f′(x)| = 1.
Read more about this topic: Mean Value Theorem
Famous quotes containing the words formal and/or statement:
“The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.”
—Simon Hoggart (b. 1946)
“The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.”
—Ralph Waldo Emerson (18031882)