A Simple Application
Assume that f is a continuous, real-valued function, defined on an arbitrary interval I of the real line. If the derivative of f at every interior point of the interval I exists and is zero, then f is constant.
Proof: Assume the derivative of f at every interior point of the interval I exists and is zero. Let (a, b) be an arbitrary open interval in I. By the mean value theorem, there exists a point c in (a,b) such that
This implies that f(a) = f(b). Thus, f is constant on the interior of I and thus is constant on I by continuity. (See below for a multivariable version of this result.)
Remarks:
- Only continuity of ƒ, not differentiability, is needed at the endpoints of the interval I. No hypothesis of continuity needs to be stated if I is an open interval, since the existence of a derivative at a point implies the continuity at this point. (See the section continuity and differentiability of the article derivative.)
- The differentiability of ƒ can be relaxed to one-sided differentiability, a proof given in the article on semi-differentiability.
Read more about this topic: Mean Value Theorem
Famous quotes containing the words simple and/or application:
“The birth of the new constitutes a crisis, and its mastery calls for a crude and simple cast of mindthe mind of a fighterin which the virtues of tribal cohesion and fierceness and infantile credulity and malleability are paramount. Thus every new beginning recapitulates in some degree mans first beginning.”
—Eric Hoffer (19021983)
“Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one otheronly in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.”
—Talcott Parsons (19021979)