Mean Squared Error - Definition and Basic Properties

Definition and Basic Properties

If is a vector of n predictions, and is the vector of the true values, then the MSE of the predictor is:

The MSE of an estimator with respect to the estimated parameter is defined as

The MSE is equal to the sum of the variance and the squared bias of the estimator

The MSE thus assesses the quality of an estimator in terms of its variation and unbiasedness. Note that the MSE is not equivalent to the expected value of the absolute error.

Since MSE is an expectation, it is not a random variable. It may be a function of the unknown parameter, but it does not depend on any random quantities. However, when MSE is computed for a particular estimator of the true value of which is not known, it will be subject to estimation error. In a Bayesian sense, this means that there are cases in which it may be treated as a random variable.

Read more about this topic:  Mean Squared Error

Famous quotes containing the words definition, basic and/or properties:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Mental health depends upon the maintenance of a balance within the personality between the basic human urges and egocentric wishes on the one hand and the demands of conscience and society on the other hand.
    Selma H. Fraiberg (20th century)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)